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The effect of blowing through a porous rotating disk on the flow induced 
by this disk is studied. For strong blowing the flow is almost wholly inviscid. 
First-order viscous effects are encountered only in a thin layer at  some distance 
from the disk. The results of an asymptotic analysis are compared with 
numerical integrations of the full equations and complete agreement is found. 

1. Introduction 
Ever since von K k m h  (1921) derived the simplified equations that govern 

the flow over an infinite rotating disk this problem, and many variations of it, 
have attracted many authors. An excellent source of reference, covering most 
of the work done before 1960, is a book by Dorfman (1963). The effect of suction, 
which was studied first by Stuart (1954), later received the attention of Rogers 
& Lance (1960) and Evans (1969). These theoretical studies cover the range 
from weak to strong suction. Gregory & Walker (1960) performed experiments 
on this subject. 

The influence of blowing has been investigated by Sparrow & Gregg (1960) 
who included suction as well. These authors consider a rotating porous disk, in 
an infinite expanse of fluid, through which additional fluid is injected normally 
and uniformly into the system. The governing ordinary differential equations 
were integrated numerically for weak, intermediate, and moderately strong 
blowing. 

In the present paper we reconsider this problem, but we shall be especially 
concerned with strong blowing because of its interesting nature. In  other areas 
of fluid mechanics the study of strong blowing has recently come into promi- 
nence. Acrivos (1962) considered large mass transfer from an ablating surface, 
which results in the viscous boundary layer being blown away from the surface. 
Watson (1966)investigatedlarge injection rates that give rise to similar boundary 
layers. From these studies it is clear that in the limiting case of infinitely strong 
blowing, the injected fluid flow is inviscid. This layer is separated from the outer 
flow, which is also inviscid, by a vortex sheet. For finite injection rates this will 
be a viscous boundary layer. 
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2. Equations and boundary conditions 
We use cylindrical polar co-ordinates ( r ,  4, z )  and denote the corresponding 

velocity components by (u, v, w). The plane x = 0 rotates about the z-axis with 
constant angular velocity i-2 and the injection rate of fluid is wo. Thus at z = 0 
we have u = 0, v = Qr, w = w,, > 0. The equations to be used are the equation of 
continuity and the r ,  4 and z components of the Navier-Stokes equation for 
incompressible fluids. Upon solving the equation of continuity in the familiar 

(1)  

way by putting 

we substitute 

+ = +w,rzf(r); v = firs(?); PlP  = W;P(r); 7 = (Q/wo)z, ( 2 )  

f f ”  - & ( j f ) 2 +  292 = R f ,  (3) 

fg’-gf’  = Rg”, (4) 

ff +p’ = Rf”. ( 5 )  

1 a?b 1 a?b u = w = -- 
r ax ’ r ar ’  

where 13 is the pressure and p the density, in the three remaining equations and 
obtain 

Primes stand for differentiation with respect to the argument. The boundary 
conditions a t  the disk, which were described above, are now given by 

f(0) = 1;  f ’ ( 0 )  = 0; g(0) = 1. (6) 

Far above the disk u, v and p must vanish, so that 

f’(co) = 0;  g(m) = 0; p(co) = 0. ( 7 )  

It should be remarked that here the pressure is the difference between the 
actual and the hydrostatic pressure. Just as in von KArmBn’s problem the axial 
velocity component w will not vanish for x --f co, since there must be an axial 
inflow to feed the radial outflow along the disk. 

From (3)-( 7 )  it can be seen that the only parameter left in the equations is 

R = v Q ~ / w ~ .  (8) 

It follows that for very strong blowing (wo large) this parameter can be small. 
It can also become small for a given blowing rate if the disk is made t o  rotate 
sufficiently slowly. Also the inviscid limit (v + 0) is represented by R --f 0. 

3. Injection layer 
By expanding in the equations (3)-(5) using series expansions of the type 

f =fo+Rfi+R2fi+ ... (9) 

and similarly for g and p, we obtain a solution for the flow in the injection layer. 
This has been shown by Watson (1966) for an analogous problem. As the highest 
derivatives are neglected in the first-order solution, we clearly consider the 
inviscid limit in this way. As boundary conditions we must consider only those 
given at  the disk. 
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After solving the requisite equations the following solutions are obtained 

fo = coszr], (10) 

go = cos2?), (11) 

fi = - sin 7 cos In (cos T ) ,  (12) 

g ,  = 6 tan 7 - $sin7 cos 7 -?sin cos q In (cos T ) ,  (13) 

f2 = 9 7  sin7 cos 7 -;+ cos-27 + ++ -% cos2q 

+ 9 sin2q In (cos 7) + ?$( 1 - 2 cos2 7) ln2 (COS T), (14) 

g, = y y  sin q cos 7 + $ C O S - ~ T  --g cos-27 + - 3g C O S ~ ~  

+ ~ ( C O S - ~ ~  + 12 - 16 c o s 2 ~ )  In (COST) + y ( 1 -  2 cos2q) In (COST), etc. (15) 

As this solution is developed using all boundary conditions prescribed at  the 
wall, it can be expected that it is valid in a region near the wall. For R = 0 we 
have f = g = cos2q. This means that the outer boundary of the region, where 
the present expansion is valid, is given by = in. Indeed, the zero streamline, i.e. 
the one issuing from the centre of rotation ( r  = 0, z = 0), is given by f = 0. 

The true meaning of the zero-order term, i.e. the inviscid flow, becomes clear 
if we consider the paths traversed by the fluid particles. If we focus our atten- 
tion on a particle launched at (ro, $o, 0) we obtain from (l), (2), (10) and (1 1) 

d?)/dr = COS27, (16) 

where p = r/ro, r = Slt and 0 = $-q50. Using 7 = 0, p = 1, 0 = 0 at r = 0, we 
obtain 

7 = arctan r ;  p = (1  + r2)h; 

so that p cos 0 = 1. Thus the projection of the path on the plane of the disk is a 
straight line through the point of injection, the direction being determined by the 
direction of w at the moment of injection. All particles approach the plane 
y = &n as r tends to infinity. 

Another interesting feature is the velocity of the particle. After a simple 
calculation we obtain 

(19) 0 = arctan r, 

which gives the expected value at  r = 0. As time progresses Iwpl will decrease 
continually and finally it will attain a value which is equal to the azimuthal 
component of the velocity of the particle at  the moment of injection. It is easy 
to show that the projection of vp on the disk is equal to fir,, independently of 
time. 

From the analytical expression for the higher perturbations it is evident that 
at 7 = in the expansion loses its meaning. At  7 = in the higher perturbations 
display singularities of increasing strength. Thus, no matter how small R is, 
we can always choose q so close to &n that the series diverges right from the start. 
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Therefore, no proper matching with the flow beyond the plane 7 = in is possible. 
Acrivos (1962) and Watson (1966) encountered the same difficulty. These authors 
then decided that there should be a viscous boundary layer in the immediate 
neighbourhood of 7 = &r.. At the disk side the flow in this sublayer should match 
with that in the injection layer described above. At the opposite side it should 
satisfy the conditions posed at 7 = co. This viscous sublayer will be described in 
the next section. 

4. Viscous sublayer 
Upon introduction of 

f(7) = RgF(p); ~ ( 7 )  = R%G(p); 7 = &~+R&P,  (21) 

F'/r-FF"+ *(F')2 = 2R8G2, (22) 
G"-Pc'+F'G = 0. (23) 

the equations (3) and (4) are transformed into 

It is Seen that the viscous terms are no longer small. Moreover, the second 
derivatives of the outer functions (f and 9)  are of the same order of magnitude as 
those of the corresponding inner functions (F  and G), if R tends to zero, which is 
required for proper matching. Indeed, both f and g are N cos27;1 for small R, so 
that these functions and their first derivatives are approximately equal to zero 
near 7;1 = in. The second derivatives, however, are of order unity. It is easy to 
show that under these conditions the transformation (21) is unique. 

From (7) we derive the boundary conditions to be satisfied by F and G as 
,u tends to infinity 

The matching conditions for p + - co are obtained from 
F'(oo) = 0; G(co) = 0. (24) 

lim R*F(p) = lim f(&r+Rip) 
/A+-- W /k+- W 

R-0 R-0 
IRtPl e 1 

= p2Rf+Y,uR4ln Rf + --+?pln ( - p )  - { Z  
+ R21n R* + { - 7 p 3  + In ( - p )  
+ + . . .} R21n R$ + O(R2), (25) 

lim RgG(p) = lim g(&n+Rip) 
p+- W {L+ - rn 

R-0 X-tO 
I Rtpl Q 1 

2 1  2 1  

_- -  + . . . R* + O(R2 ln2 R)). 
4 1  9 P2 I 

Therefore, by writing 

F ( p )  = Fo(p) + Fl(p) Rg In R) + F2(p) R8 + F3&) R* In 2Rf 

+ F4(p) Rt In R) + O(R4) (27) 
and similarly for G(,u), matching is possible. 
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By inserting expansions of the type (27) into (22) and (23) the following zeroth- 
order equations are obtained 

F! -FOP; + ;(F;)2 = 0, 

G6-FoGi+P;Go = 0, 

showing the surprising fact that Fo is uncoupled from Go. In other words: in the 
viscous sublayer the axial and radial motions are uncoupled from the motion in 
the azimuthal direction, i.e. to first order. Thus, we can solve (28) first, 

It can be shown by substitution and collecting terms of highest order that 
the asymptotic behaviour of Fo as p -+ - co is given by (a, p and y general con- 

Thus by taking a = 1, /3 = 0 the matching condition Po --f pL2 as p -+ - co can be 
satisfied. In fact, this condition is satisfied by a one-parameter set of solutions. 
By choosing y conveniently the condition FA(co) = 0 can be fulfilled. This is 
confirmed by numerical integration. 

An important result is the value of po for which F(p,) = 0 

/LO = - 0.430187. (31) 

Indeed, this determines, to first order, the plane that separates the region of 
ambient fluid from that of injected fluid. Other pertinent figures are given in 
table 1. 

i F&O) w%J lT(P0) -Fi(a) Gi(Pll) G&O) 
0 0.0 - 1.295614 1.223951 - 19209625 0.835209 - 0.977468 
1 obtainable from i = 0 
2 1.325093 2.340304 - 4.633694 1.573091 - 1.471894 3.100884 

TABLE 1 

Prom the fact that Fo tends to a negative constant as p + co we derive im- 
mediately using (28) 

where c is a constant to be determined, and thus the exponential decay is guaran- 
teed. Indeed, the flow above the boundary layer is potential and matching of a 
boundary layer with such a flow should involve only exponentially small errors 
(Goldstein 1965). It should be noted that the inviscid layer near the plate is not 
a potential flow and thus the argument of Goldstein does not apply to matching 
with this layer. We will see in fact that the matching of higher orders will involve 
terms that decay algebraically. 

We will devote our attention now to the integration of (29) using as boundary 
conditions Go(m) = 0 and the matching condition obtainable from (26). This 
matching condition shows that the behaviour of Go for p -+ - co is rather special 
and this will cause us to  have a closer look at the asymptotic behaviour of 

FA N c exp (Fo(m) p )  as p -+ 03, (32) 
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solutions to (29).  If we neglect terms of exponentially small order in the co- 
efficients, the asymptotic behaviour of Go for p -+ - 00 should be obtained from 

Gi -p2G4 + 2pGo = 0. (33) 

One can easily convince oneself, by substitution, that the general solution of 
(33) can be expressed in confluent hypergeometric functions 

(34) Go = AIM( - 3)  3 7  Qp3) + A2M( - &, $ 9  5p3) ~7 

where 
(a)  xn 

M(a,b,x) = -n-. 
n=O (b),  (35) 

The two independent solutions in (34) have, apart from a constant multiplier, 
the same asymptotic behaviour as p -+-a (Abramowitz & Stegun 1965). 
Using (for x -+ m) 

(a) ,  (1 +a-b),x-n+q2-R) 
n! 

+ exponentially small terms, (36) 
we derive 

Thus by appropriate choice of the coefficient in (37) the behaviour of (26) is 
obtained. This provides one relation for the unknown constants A, and A,, 
leaving one degree of freedom to satisfy Go(m) = 0. To achieve this we of course 
have to integrate the full equation (29) using the computer. We refer again to 
table 1 for the results. 

It may be of interest to note that the asymptotic behaviow (37) was used to 
advantage in the numerical integration. By extending the expansion up to p-lo 
the numerical integration needed only be carried up to p N - 5.  Applying the 
condition that the integrated function join smoothly with the known asymp- 
totic behaviour a t  p = - 5 ,  which is known very accurately, only exponentially 
small errors are made in view of (36). As a check the integration was carried out 
up to p = - 10 using the calculated initial conditions. This confirmed the alge- 
braic behaviour of the tail given in (37). Some researchers have reported diffi- 
culties in integrating numerically boundary-layer equations that behave 
asymptotically in an algebraic manner. One must integrate over an extended 
range for proper satisfaction of asymptotic conditions. However, the present 
analysis shows that one may get around this by making full use of the asymptotic 
behaviour. 

The first perturbations Fl and Gl have to satisfy the equations 

FY-FoFi+FAFi-F:Fl  = 0, (38) 

Gi-FoG;+FAG1-GAF,+GoF; = 0, (39) 

( 40) 

(41) 

F';(co) = Gl(co) = 0, and appropriate matching conditions (see (25)-(26)). The 
solutions are given by 

Next, the equation for F2 reads 

Fl = SF;; G, = SGA. 

FT - FoFL + FA Fi - FiF2 = 2G$, 
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the solution of which should satisfy Eli(co) = 0 and (25). In order to prove that 
solutions of (41) can satisfy the matching condition, let us differentiate (41) 
and retain only terms that are not exponentially small as p -+ - co. This yields 

Fiv-p2Fi = 4G0G& (42) 

F t  = 4eb' e-h3 Go Gi ds + ce%P, (43) 

where Go is given by the expression in parentheses of (37). The general solution 
of (42) is 

s" 
where p is supposed to have large negative values. By repeated partial integra- 
tion the first term on the right-hand side of (43) can be expressed as 

GoGi 1 COG; 1 1 GoGh " 
-4"++)'+7(p(7)) +...I9 

which upon substitution of the asymptotic behaviour of Go renders 

16 1 128 1 6800 1 - 8u _ _ _  +- _ _ _ _  - 
' 3 p 2  9 p5 81 p8+- 

(44) 

(45) 

By integrating (45) three times the general asymptotic behaviour of F2 as 
p -+ - co is obtained as follows 

+ A + Bp + Dp2 + C x terms of exponentially small order, 

where A,  B, C and D are constants of integration. On choosing A = 0, B = y- 
and D = 0 it follows that the asymptotic behaviour as prescribed by (25) can be 
satisfied with exponentially small error. Since C is still not determined it follows 
that a one-parameter set of solutions exists that satisfies (25). From this set we 
have to choose the solution that also satisfiesPL(co) = 0. This analysis is confirmed 
by numerical integration. 

This process may be continued up to any order desired, but the algebraical 
work becomes increasingly cumbersome. Since it is clear now that the special 
behaviour prescribed by the outer solution can be satisfied indeed by solutions 
of the inner equations, there is no need to dwell on this any further. The results 
for G, have been added in order to complete the inner expansion up t o  Rt. 

A comparison of the results of the approximate treatment given in this section 
with results of an accurate numerical integration is now possible. The quantities 
that are most easily compared aref(co) and ro, wheref(7,) = 0. The asymptotic 
expression forf(co) is immediately obtainable from (21)) (27) and table 1. That 
for qo calls for a somewhat more involved analysis. We have 

0 = f ( q o )  = R * F ( , U ~ + R * ~ R ~ , U ~ + R * , U ~ +  ...) 

= R*[TO(PO) + {FAPO) +PlmPo))R*InR* + { 4 ( p o )  +IU2~i(po)P% + ... I. (46) 

(47) 

Equating all coefficients in (46) to zero gives the values of pl, p2, etc. Thus 

ro = in + R)( - 0.430187 - +R* In Ri- + 1-022753Rt + . . .). 
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This asymptotic expression for q,, and that for f(m) have been compared with 
exact numerical calculations (table 2). As expected the agreement is closest for 
smaller values of R. 

TO f(a) 
R r A A > f \ 

Numerical Asymptotic Numerical Asymptotic 

0.1 1.687 1.678 - 0.212 - 0.188 
0.05 1.6014 1.5966 - 0.1418 -0.1352 
0.01 1-529655 1.529278 - 0.053065 - 0.052757 
0.001 1.534945 1.534940 -0.011943 - 0.011939 
0~0001 1.551750 1-5517498 - 0.002599 - 0.0025988 

TABLE 2 

5. Discussion of results 
The frictional moment on the part of the disk with radius a is 

where the value of g'(0) can be obtained from the solution developed in the in- 
jection layer. Three terms of the expansion (two of which are zero) can be ob- 
tained from ( l l ) ,  (13) and (15). Watson (1966) in dealing with a similar problem, 
has shown that one need not integrate the equations if one is interested in the 
flow field in the immediate neighbourhood of the disk only. Indeed, the problem 
posed in the injection layer is an initial-value problem with boundary conditions 
at the disk and thus double series expansions involving integral powers of 7 and 
R can be used. Substitution in the equations leads to recursive formulae for the 
coefficients of these series. It is a simple matter to obtain an algorithm that 
generates these coefficients. In  this way the following expression is found for 
the frictional moment 

a3 

W'O 
N = 7 ~ ~ a ~ v ~ - ~ [ l - 2 2 R ~ + 8 9 2 R ~ - 4 4 8 5 6 R ~ + 2 5 2 9 5 8 4 R ~ +  ...I. (49) 

The calculation of the coefficients was carried as far as possible until significance 
was lost because of the limitations of the computer. By calculating the ratio of 
two successive coefficients it became clear that the series expansion of (49) con- 
verges for 

i.e. the solution presented for the injection layer is valid at  the disk for R < 0.12. 
The results were checked by comparison with very accurate numerical integra- 
tions of the complete equations. This showed that by using the series expression 
of (49) until O(R14), at least eight significant decimals can be obtained if R < 0.05. 
For R = 0.1 the numerical integrations still confirmed the three significant 
decimals of the series. 
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These results show that for R < 0.12 the influence of the viscous boundary 
layer is trancendentally small at  the wall, since (49) is obtained without any 
knowledge of the viscous boundary layer. For R > 0.12 (49) is no longer valid 
whence we must assume that M is influenced then by the viscous sublayer. 
It seems to follow that for R N 0.12 the viscous sublayer detaches from the wall. 

Another fact which deserves some attention is the rather peculiar dependence 
of yo on R. Numerical integrations show that, for R large enough, 7o will be larger 
than Qn and qo (R) is a monotonically increasing function of R. qo reaches a mini- 
mum value, which is smaller than +n at about R = 0.01. For yet smaller values of 
R it will increase until it reaches the value in for R = 0. Since qo is related to the 
thickness of the injection layer 

2 0  = ( W O P )  vo(R), (51) 

it is possible to study the dependence of zo on the viscosity u. Thus for the larger 
values of R it is seen that increasing the viscosity will lead to increasing values of 
zo. This is indeed an expected behaviour since the centrifugal force will be op- 
posed stronger for larger values of the viscosity. Thus the fluid will spiral out 
slower and hence the injection layer will be thicker. 

For R close to 0 an opposite behaviour is encountered: if R is increased from 
0 to a slightly larger value, the injection layer will become thinner. In  explaining 
this we should observe that for R = 0 the velocity gradients, in particular au/az, 
are discontinuous at 7 = Qn-. For 7 = in- 0 we have au/az = - rR2r/wo whereas 
au/& = 0 for 7 = $n + 0. The velocity u itself is equal to zero at  7 = &r. If slight 
viscosity effects are introduced the velocity gradient has an accelerating effect 
on layers of lowest velocity and thus the fluid in the neighbourhood of 7 = $n 
will move radially outwards. It should be noted that this is a purely viscous effect, 
i.e. no centrifugal forces are causing this radial outflow. Indeed, as we have seen, 
centrifugal forces do not affect the zero-order term of the viscous sublayer. 
These remarks are substantiated if we consider the two-dimensional problem 
where a shear layer with u = - Ky (y < 0) comes into contact a t  x = 0 with a 
region of quiescent fluid. Here u is the velocity in the x direction. If the flow 
is inviscid both regions will not influence each other and the separating plane will 
be at y = 0. If the fluid is viscous a boundary layer will develop about y = 0.  

Upon substituting 9Ku2x2 * $ = - (T) Q(s) ;  s = y 

in the two-dimensional boundary-layer equations we obtain 

and the boundary conditions 

&'(GO) = 0; lim (&I-2s) = 0. 
s-+- a, 

(54) 

But this system is the same as that which governs the main term of the viscous 
sublayer above the rotating disk. And thus the separating surface will be 
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Equation (53) is recognized as that used by Goldstein, with boundary conditions 
different from those used here, to describe the near wake ofa flat plate (Goldstein 
1930). 

The analogy with our problem for the rotating disk becomes complete if we 
consider a plane jet issuing into a quiescent fluid at x = 0, - 1 6 y < 1. For OW 

purpose the exact velocity distribution in the jet does not matter. We only re- 
quire that at  the edges of the slit the velocity gradient has a finite jump while 
the velocity itself is equal to zero at  these edges. It is well known that such a 
problem can be solved by local series expansion about the planes y = f 1 about 
which there are viscous boundary layers. The above analysis shows that the 
inject,ed layer will become thinner at first. Due to the finiteness of the jet this 
analysis is valid for small values of x only. It is well known that the jet will 
eventually become a Bickley-Schlichting jet which spreads out far beyond the 
lateral dimensions of the slit. 

As a last subject for discussion we will consider the influence of blowing on 
the uniform inflow far above thc disk. Prom (I), ( 2 )  and ( 2  1) it follows immediately 
using table 1 that for R < 1 and 2% w,/Q(+n) 

so that the inflow decreases to zero as w,, -+ 00, independently of v and a. Since 
inflow exists in order to feed a viscous boundary layer (no inflow is encountered 
for R = 0) this shows that the detached boundary layer is fundamentally 
different from the boundary layer that is attached. In view of this it is interesting 
to compare (56) with the inflow in the non-blowing case (Dorfman 1963) 

W - - O.886(Jjfi)*. (57)  

Thus, with decreasing v and fi the inflow in the case of blowing decrease: more 
rapidly than that of the non-blowing case. 

Part of this work was done when the author enjoyed the hospitality of the 
University of British Columbia. The financial support of the National Research 
Council of Canada is gratefully acknowledged. 
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